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A qualitative analysis is made of the static and dynamic behavior of a one- 
dimensional classical electron gas in a periodic potential in the framework of a 
mean-field kinetic theory. The mean-field equations have been formally solved 
elsewhere in terms of the trajectories of one electron in the mean-field 
equilibrium potential, which determines the local electronic density. Taking 
advantage of the relative simplicity of the mean-field expressions in one dimen- 
sion, we study the effects of the temperature upon the local electronic density, 
the static structure factor, and the spectrum of the fluctuations in the long- 
wavelength limit. At high temperatures, the system tends to behave like a 
homogeneous electron gas; however, the collective plasmon mode at zero 
wavenumber is damped and shifted below the plasma frequency. At low tem- 
peratures, the system behaves as an ensemble of independent electrons strongly 
localized in the neighborhood of the fixed ions that create the periodic potential; 
the plasmon mode then vanishes. We consider the physical relevance of these 
predictions. They turn out to be quite reasonable, despite the failure of mean- 
field theory to predict the phase of the model. 

KEY WORDS:  Classical electron gas; periodic potential; mean field; 
equilibrium fluctuations; plasmon mode; damping; shift. 

1. I N T R O D U C T I O N  

In a previous paper (1) (paper I), we established the mean-field equations 
describing the static and dynamic behavior of a classical electron gas in a 
periodic potential in d dimensions. This model is made up of point charges 
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- e  (the electrons) moving in the periodic potential created by smeared 
charges e (the ions) fixed at the sites of a periodic lattice. It can be viewed 
as a special version (the fixed-ion model) of the usual Coulomb gas with 
two mobile species. In paper I, the mean-field equations were formally 
solved in terms of the trajectories of one electron in the mean-field 
equilibrium potential associated with the local electronic density. We also 
studied the long-wavelength behavior of the static and dynamic structure 
factors computed through the mean-field equations. It results from this 
study that the system is always a conductor, at all temperatures and for 
any d, in the framework of the mean-field theory. The present paper 
(refered as paper II) is devoted to an explicit and systematic analysis of the 
mean-field solution in one dimension. In particular, the weak and strong 
coupling regimes are studied in detail. 

The equilibrium statistical mechanics of the one-dimensional Coulomb 
gas can be worked out exactly. (2) This exact solution is used to show that 
the two-component system is dielectric at all temperatures (2) from a static- 
screening point of view. For the present fixed-ion model, exact solutions 
are also available. (3'4) When the ionic charge density is uniform, the model 
is in a plasma phase at all temperatures. (3) When the former is nonuniform, 
the model is always dielectric (4) and it should be insulating from a dynamic 
point of view, if we assume the transport coefficients to be well-defined 
quantities. Thus, the man-field predictions regarding the phase diagram are 
completely wrong in one dimension. Nevertheless, as we shall see 
throughout this paper, the mean-field theory correctly describes some static 
and dynamic mechanisms. Since these mechanisms are independent of 
space dimension, the present one-dimensional analysis is particularly useful 
for understanding the general features of the mean-field solution in higher 
dimensions. 

This paper is organized as follows. In Section 2, we briefly recall what 
the model is. The local electronic density is computed in terms of elemen- 
tary functions in Section 3. Its high- and low-temperature forms are 
investigated. The temperature dependence of the static structure factor is 
also briefly discussed. In Section 4, we consider the spectrum of the fluc- 
tuations in the long-wavelength limit. By taking advantage of the simplicity 
of the trajectories in one dimension, we first reduce the formal mean-field 
expressions in favor of more explicit formulas. This reduction allows us to 
study the behavior of the collective plasmon mode in both high- and 
low-temperature regimes. We summarize our main results and make some 
comments in Section 5. 
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2. THE M O D E L  

The fixed-ion model in d dimensions has been defined in paper I. Here, 
the ions are fixed on a line at the positions Xn = na, n ~ 7/, where a is the 
lattice spacing. The Wigner-Seitz (WS) unit cell is the interval 
I - a / 2 ,  a/2]. The mean electron density is p = 1/a. 

In one dimension, the Coulomb interaction potential between two 
electrons separated by a distance Ixl is 

r = - e  2 Ixl (2.1) 

For the sake of simplicity, we consider that the ions are point charges [i.e., 
6 = 0 in Eq. (I.2.5)]. The corresponding ion-electron interaction potential 
is 

~ie( lxl)  = - - ~ c ( I x l ) : e 2 1 x l  (2.2) 

The excess equilibrium properties of the infinite system only depend on the 
coupling constant F =  Be2a. The natural length and time scales are respec- 
tively the lattice spacing a and the inverse of the plasma frequency COp = 
(2e2p/m) 1/2. The Debye wavenumber is ~D = (2fle2P) 1/2. 

3. THE LOCAL ELECTRONIC DENSITY A N D  THE STATIC 
STRUCTURE FACTOR 

In this section, we solve the mean-field equilibrium equations (I.3.10), 
which determine at one and the same time the local electronic density p(x) 
and the potential V(x). Both p(x) and V(x) are periodic functions of x/a 
with period 1, depending on the coupling constant F. Their asymptotic 
forms when F--,  0 or F ~  ~ are investigated. Some considerations about 
the qualitative behavior of the mean-field structure factor are also given. 
We conclude the section with a brief discussion about the deficiencies and 
the successes of the mean-field approach in the description of the static 
properties of the model. 

3.1. Calculat ion of  p (x )  and V(x) 

In the present case, the coupled mean-field equations (I.3.10) become 

p(x) = p(O) exp{ - f l [  V(x) - V(O)] } (3.1) 

and 

V,x,=e2f  xxlp,x,  ,xna, 1 
- - o o  n =  - -  o C  
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The solution of (3.1), (3.2) necessarily satisfies the neutrality sum rule 

fwsdX p(x)= fa/~/2dx p(x)= l (3.3) 

because otherwise V(x) would diverge. This sum rule will be used as a con- 
straint in our method of resolution. Since both p(x) and v(X) are periodic 
and symmetric functions of x, we only have to compute these functions in 
the interval [0, a/23. 

As seen from Eq. (3.2), V(x) is nothing but the electrostatic potential 
created by the point ions and the electronic charge distribution -ep(x) .  
Therefore, V(x) obeys to the one-dimensional Poisson equation 

~ x  2 (x )=2e  2 p ( x ) -  ~ 6 (x -na )  (3.4) 
n =  o~ 

B taking the restriction of (3.4) to the interval [0, a/2] with p(x) replaced 
by the expression (3.1), we obtain a second-order differential equation for 
the dimensionless potential V*(x)=/~[V(x)-V(0)] .  This equation is of 
the Poisson-Boltzmann type and reads 

d2V * 
dx 2 (x) = -ctr e x p [ -  V*(x)] (3.5) 

for 0 < x <~ a/2, with the boundary conditions 

V*(0 + ) = 0 (3.6) 

dV* 
dx (0+) =/~e2 (3.7) 

which are direct consequences of the definition of V* and of the Gauss 
theorem, respectively (the electrostatic field, which is proportional to 
dV*/dx, is discontinuous at the points na where the point ions are located). 
In Eq. (3.5), c is the constant c = p(O)/p. This equation with the boundary 
conditions (3.6), (3.7) can be solved by standard methods as shown in 
Appendix A. The electronic density p(x) and the mean-field potential V(x) 
are then computed through 

p(x) = cp exp[ - V*(x)] (3.8) 
and 

V(x) = v(o) + k .  TV*(x) 

= - e  2 fa!2 dx Ixl p(x) + k~ TV*(x) 
~'--  a / 2  

f 
a / 2  

= -eZcp ~-a/2 dx Ixl e x p [ -  V*(x)] + kB TV*(x) (3.9) 
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[in the expression (3.2) for V(0), the integral over x' can be restricted to 
WS with the help of the sum rule (3.3)]. The constant c, which plays the 
role of a free parameter in the present method, is determined by imposing 
the neutrality constraint 

f 
a/2 f 'a/2 

a/2 dx p(x) = 2cp J0 dx e x p [ -  V*(x)] = 1 (3.10) 

As shown in Appendix A, this constraint leads to the transcendental 
equation 

tg{�88 -- F] ,/2} = FI/z/[4c(F ) _ V] 1/2 (3.11 ) 

which relates c to the coupling constant F. The resulting expressions for 
p(x) and V(x) are 

p ( x ) = p l c ( F ) - - F l ( l + t g 2 { ( 1 - - J - ~ - ) F 1 / 2 I c ( F ) - - F l X / 2 } )  (3.12) 

and 

V(x) = - e 2 a l n  (1 +tg2 ~(1 [Xl)F1/2r F71/2)\ 

for rx] ~< a/2. 
Let us briefly study the variations of p(x) and V(x) in the interval 

[0, a/2]. The p(x) decreases monotonically from p(0) = pc(F) to p(a/2) = 
p [ c ( F ) - F / 4 ]  when x varies from 0 to a/2 [c(F) is always larger than 1 
and larger than F/4], whereas V(x) increases monotonically from V(0)= 
e2a ln[1 - F / 4 c ( F ) ] / F  to V(a/2)= 0. Both p(x) and V(x) have a kink at the 
origin x = 0 (and at all the points x =na), i.e., the first derivatives dp/dx 
and dV/dx are discontinuous at x = 0. This is due to the presence of the 
point ion located at x = 0  ]-by virtue of Gauss's theorem, one has 
dV/dx(O + ) = e 2 = -dV/dx(O- )]. Furthermore, dp/dx and dV/dx vanish at 
x = a/2 (and at all the points x = na + a/2). In Figs. 1 and 2 we have drawn 
the dimensionless quantities p(x)/p and V(x)/eZa, respectively, as functions 
of x/a in the interval [ - 1 / 2 ,  1/2] for several values of F [p(x)/p and 
V(x)/e2a only depend on x/a and _V, as should be the case]. 

3.2. Weak and Strong Coupl ing Regimes 

The weak coupling regime corresponds to the limit F--+0 (high tem- 
peratures or high densities). In this limit, c(F) goes to 1, and the local den- 
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Plot of p(x) as a function ofx/a in the interval [ -1 /2 ,  1/2]. ( - - )  F =  1; ( - - )  F=5 .  
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Fig. 2. The same as Fig. 1, with V(x)/e2a in place of p(x)/p. 



Classical Electron Gas 691 

sity p(x) given by (3.12) becomes uniform and equal to p: as expected, the 
electrons are not sensitive to the periodic structure of the lattice. Replacing 
p(x') by p in (3.2), we see that V(x) then reduces to the potential VL(X) 
created by the ionic lattice and the uniform charge distribution -ep, i.e., 
(Ixl <~ a/2 ) 

V(x) ~ VL(x) = -e2a/4 + e 2 Ix] - eZpx 2 (3.14) 

when F--*0. Of course, the weak coupling form (3.14) of V(x) can be 
recovered by taking the limit F ~  0 in (3.13). The corrections to the weak 
coupling forms of p(x) and V(x) are obtained by expanding the expressions 
(3.12), (3.13) in power series with respect to F (x being kept fixed). This 
gives in particular 

p(x)=p l + e \ 6  a a2 ] + O ( r  21 (3.15) 

for Ix] ~< a/2. 
The strong coupling regime corresponds to the limit F ~ oo (low tem- 

peratures or low densities). In this limit, c(F) diverges and behaves as F/4. 
Inserting this asymptotic behavior in (3.12), we find that p(x) goes to zero 
everywhere except at the origin (and at the points x=na), where p(0) 
diverges like pF/4: the electrons are more and more trapped by the ions as 
F increases, and they are completely frozen at the lattice sites for F =  oo. 
From (3.13), we infer the large-F expansion of the difference V(x) -  V(O), 

V(x)-V(O)~e2a{21n F - ~ l n l  [4~2 (1 + cotg2 x ) ]  + o ( 1 ) }  (3.16) 

which is valid for x fixed, 0 < Ix[ ~< a/2. The strong coupling form of V(x) 
turns out to be a plateau for 0<  [x] <~a/2, i.e., V(x) becomes constant in 
this domain and reduces to V(0)+ 2e2a(ln F)/F IV(x) varies in a narrow 
neighborhood of the origin]. 

3.3. The  Sta t ic  S t r u c t u r e  Factor  

The mean-field expression (I.5.6) of the static structure factor S(k) 
here becomes 

S(k) = k2T(k)/[k 2 + x~ T(k)] (3.17) 

T(k), which is defined by the series (I.5.4), can be rewritten as 

= - ~/2 c lx  p ( x )  ~(x; k) (3.18) 
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where ~(x; k) is the solution of the integral equation 

~ a / 2  

~(X; k) = 1 - -  ~ "--a/2 dx' {(x'; k) p(x') ~ s(X' - x; k) (3.19) 

with 

k - 2~n "~ 2i~n(x' - x) 
~9s(X'-x;k)=P ~, ~c - - ~ - ) e x p  a 

n =  - - o o  

n 4 = O  

1 2ircn(x' -- x) 
=2eZp ~" (k-2~n/a)  2exp a 

n =  - - o o  

n ~ O  

e2a ~exp[ik(x '-  x)] 
2 ( ~ 7 ~ )  2 ic~  ' - ~ - - ) e x p [ i k ( x  - x)] 

_ _  4 } a 2[x'--Xla exp[ ik (x ' -x )]  a -~  ' [x'-x[<<.~ 

(3.2o) 
Note that the static propagator ~'s is complex. Using the symmetry 
relations 

Os(x'-x;k)=~s(x-x';k)=~s(x'-x; -k), o(-x)=p(x) 

it is easy to check that T(k) and S(k) are real, even functions of k, as they 
should be [-the positivity property of S(k) is hard to prove]. Although the 
kernel p(x ' )Os(x ' - x ;  k) of the integral equation (3.19) is known in terms 
of elementary functions, we are not able to find a closed analytic expression 
for ~(x;k) and consequently for S(k). However, we can study the 
qualitative dependence of S(k) on both k and F. 

First, we consider the small-k limit. The function T(k) is an analytic 
function of k 2 in the vicinity of k = 0. Furthermore, T(0) is strictly positive 
at any temperature. (1) Thus, the small-k expansion of S(k) reads 

k2[ k2 ] s(k)=~ 1-~+O(k ~) (3.21) 

2_ ~c2 T(0). As usual, k s  1 is identified with the characteristic screen- with k, - 
ing length of the electrons. The ratio ~CD/k s = 1/IT(0)] i/2 can be viewed as 
a measure of the effect of the ionic "trapping" upon the electronic 
screening. As shown in Appendix B, this ratio is always larger than 1, i.e., 
the electronic screening is weaker in the present system than in an 
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homogeneous electron gas. In the weak coupling limit ( F - ,  0), T(0) goes 
to 1, while in the strong coupling limit ( F ~  oo), T(0) goes to zero: the 
ionic "trapping" is more and more efficient as F increases [-Fig. 3 shows the 
qualitative variations of T(0) as a function ofF] .  

When k ~  G. (n C0), the static propagator O s ( X ' - x ; k )  becomes 
singular. However, T(k) remains finite at k = G., as shown in Appendix B. 
Moreover, if we introduce the wavenumber q = k - G ,  belonging to the 
first Brillouin zone BZ (fq] <<.re~a), we can express T(k) in terms of the 
functions qm(X; q) defined as the solutions of the integral equations 

( ,  

tlm(X; q) = exp(iGmx ) -- fl | dx' qm(X'; q) p(x') Os(X'-- X; q) (3.22) 
J W  S 

We find in Appendix B 

T(G~ + q) = ((Gn + q)2{qZTn,,,(q) + •2[T0,0(q) T . , . ( q ) -  T.,o(q) T0,.(q)] }) 

x {(G. + q)Z[q2 + ~c2 To,o(q)] - q2~c2 Tn,~(q) 

-~c4[To,o(q) T., .(q)-To,~(q) T~,0(q)]} ' (3.23) 

with 

Tn,m( q ) = fws dx r/.(x; q) p( x ) exp( - iGmx)  (3.24) 

T(0) 

1 

~ E  
0 

Fig. 3. The qualitative shape of T(0) as a function of F. 
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[T0o(q)= T(q)]. Since T..m(q) is a real, analytic function of q in BZ, 
T(k) = T(G~ + q) and S(k) are analytic functions of k on the real axis. In 
particular, T(k) is well defined at k = Gn and reduces to 

2 2 GnKD[T0,o(0 ) T. ,n(0)-  T.,o(0 ) To,.(0)] 
T(Gn) = G2~? D To,d0) -  ~c~,[To,o(0) T. ,n(0)-  T.,0(0) To,.(0)] (3.25) 

It can be checked from (3.23) (see Appendix B) that T(k) goes to 1 when 
k ~ 0% and consequently so does S(k), as it should. 

The behaviors of T(Gn) in the weak and strong coupling limits give 
some insight into the F dependence of S(k). In Appendix B, the following 
small-F expansions are derived: 

r 3 
T(0) = 1 - 3--~--~ + o ( r  4) (3.26) 

4 F  2 
T(G.) = 1 (aG.)4 t- O(F3), n # 0  (3.27) 

and it is shown that T(Gn) [like T(0)] goes to zero when F ~  oe. It results 
from this that S(k) reduces to the usual Debye-Hfickel expression 
kZ/(k2+tr 2) when F ~ 0 ,  while S(k) goes to zero when F ~  oo (k fixed). 
Furthermore, T(k) and S(k) should exhibit an oscillating structure for F 
finite (see Appendix B). 

In order to give a simple interpretation and a clear meaning to the 
previous features of S(k), it is useful to investigate their consequences for 
the two-body distribution function p~2)(x~, x2) of the electrons. The latter is 
related to S(k) through 

S(k) = 1 + f ~ dx exp(ikx) fa/2 dxl [p(2)(x,, Xl + x) - p(xl) p(xl + x)] 
- -  0:3 "J a / 2  

(3.28) 

Since S(k) is analytic on the real axis, the pair correlation function h(x) 
averaged over WS, 

h(x) = a [a/2 dxl [p(2)(xl, xl + x) - p(xl) p(xl + x)] 
" ; - -  a / 2  

(3.29) 

decays faster than any inverse power of Ixl when Ixl ~ oo. In fact h(x) 
should decay exponentially, like exp(-Ixl/2s) ,  where the screening length 
2s is of the order of k j  1. When F ~ 0 ,  2s reduces to the Debye length 
2D=KD 1, and when F-~ 0% 2 s becomes of the order of a. The weak 
coupling form of h(x) merely is -(F/2)l/2exp[--Ixl(2F)l/:/a]. For F 
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finite, h(x) should oscillate [like S(k)]: these oscillations can be traced 
back to the natural structure imposed by the periodic lattice. The large-F 
behavior of S(k) implies that h(x) vanishes identically when F-~ 0% except 
in a narow neighborhood of the origin. This means that electrons lying in 
different cells become uncorrelated in the strong coupling limit. The latter 
result is compatible with the asymptotic behavior of 2,. 

3.4.  D i s c u s s i o n  

The mean-field description of the static properties turns out to be 
quite reasonable from a qualitative point of view. The main reason for this 
is that the ionic "trapping" is properly taken into account in the mean-field 
approach. The latter mechanism induces a strong localization of the elec- 
trons in the strong coupling limit. In particular, the exact electronic density 
should become very sharp near the ionic sites when F is large. At the same 
time, the electronic screening should be weakened because the mean den- 
sity of "free" electrons becomes very small. These expected behaviors of the 
exact quantities are well reproduced by the mean-field theory. Further- 
more, in the weak coupling limit, the mean-field expressions of p ( x ) - p  
and S(k) (for k r 0) should become asymptotically exact. 

Although some aspects of the electronic localization are correctly 
described by the mean-field theory, it must be borne in mind that the 
mean-field prediction regarding the phase of the system is wrong for any F. 
This deficiency of the mean-field theory means that the small-k behavior 
(3.21) does not coincide with the corresponding one of the exact structure 
factor S . . . .  t(k). In other words, if we define Texact(k ) through (3.17) with 
S . . . .  t (k)  in place of S(k), Zexact(0 ) is always zero, in contrast to the mean- 
field T(0), which vanishes only for F =  oe. 

Although the system is dielectric (4) for any F, the behavior of the exact 
structure factor has been analyzed introducing notions and quantities, like 
the electronic screening or the correlation length, that usually characterize 
a plasma phase. This analysis is allowed because the exact correlations 
decay like exponentials at large distances/a) This fact decay is a peculiarity 
of the one-dimensional system, since in two dimensions, in the dielectric 
phase, the correlations cannot decay faster (5) than 1/r 4. This is due to the 
fact that the electrostatic field created by a compact overall neutral cloud 
strictly vanishes outside this cloud in one dimension. Finally, let us 
emphasize that only the charges of the system are screened. On the 
contrary, infinitesimal external charges are not screened, in agreement with 
the dielectric nature of the system. 
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4. THE S P E C T R U M  OF THE FLUCTUATIONS 

In this section, we study the spectrum of the fluctuations in the long- 
wavelength limit, which is characterized by the function 

s(k, co) 
s(co) = lim - -  (4.1) 

k ~ o  S ( k )  

where S(k, co) is the dynamic structure factor. The mean-field expression of 
S(co) iS (1) 

I(co) 
s(co) = rcco{ [1 + R(co)] 2 + F(co) } (4.2) 

with 

R(co) = Re{ Wl(co ) + Wz(co) } (4.3) 

I(co) = Im{ Wl(co ) + W2(co)} (4.4) 

Introducing the complex frequency 2 (2 = co + iq (r/> 0), one has r [~o(v)= 
(~m/27~ )1/2 exp( - ~mv2/2 ) ] 

["a/2 fo~ ico K~ J dx dv p(x) ~p(v) W~(co) = - 2  a/2 - ~  

x ~ l i m  fo ~ dtexp(if2t)[Xce(t;x, V)--X] 2} 
[~/~0 + 

f 
a/2 

w2(co) = K~ o-a/~ ax '  ~(x'; co) p(x ' )  ~(x'; co) 

(4.5) 

(4.6) 

where ~(x'; co) is 

~(x'; co) = icofl dx dv p(x) ~o(v) 
- -  2 

x ~ lim i ~ dt exp(if2t)[Xce(t; x, v ) -  x] ~s (X ' -  xce(t; x, v))~ 
~ l ~ O  + ao ) 

(4.7) 

2 In paper I, the frequency co is complex and has a finite, positive, imaginary part ~/, which 
ensures the convergence of the time integrals ~ dt exp(icot)... .  In the final mean-field 
expressions, these integrals mus t  be understood as limits when r / ~  0 +. In order to keep the 
notat ions as simple as possible, here we redefine the complex frequency as (2 = co + iq, where 

henceforth co is real. 
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and ~(x'; co) is the solution of the integral equation 

~(x';co) = ~(x';co) - /~~ &"~(x"; co) p ( x " ) [ ~ ( x " -  x') + ico~ D( x", x' ; c o ) ]  
o - -  a / 2  

(4.8) 
with 

~(x',co)=ico f~  dvq)(v)l lim f o  
{ q ~ O  + 

and 

fo Oo(x", x'; co) = dv ~o(v) lim 
oo ~ rl ~ O + 

dt exp(iOt) [X,.e(t; X', V) -- X'] 1 (4.9) 

] 
dt exp(if2t) Os(X" - xce(t; x', v))~ 

(4.10) 

Xee(t; X, V) is the position of one electron at time t moving in the mean-field 
potential V(x) with the initial conditions Xce(0; X, V) = X and vce(0; x, v) = v. 
It can be easily checked that s(co) is a symmetric function of co (as it should 
be), i.e., s ( -co)=s(co) .  Henceforth, we shall study the behavior of s(co) for 
positive frequencies (co > 0). 

In Section 4.1 we perform a part of the multiple integrals that deter- 
mine Wl(co) and W2(co) by using simple properties of one-dimensional 
motions in periodic potentials. The resulting expressions for Wl(co) and 
W2(co) allow us to study the small- and large-co behavior of s(co), as well as 
its weak and strong coupling forms. The influence of the coupling of the 
electrons to the ionic lattice upon the collective plasmon mode is also 
investigated. We conclude the section by a brief discussion about the 
reliability of the mean-field predictions and their physical meaning. 

4.1. Reduct ion  of  the  M e a n - F i e l d  Expressions 

The trajectories determining the man-field quantities have the follow- 
ing simple properties, which are quite useful in the reduction processes. 
These trajectories are confined in WS if the energy E=mv2/2 + V(x) is 
negative [the maximum of V(x) is V(a/2)= 0], while they are unconfined 
and go through an infinite number of cells if E is positive. For both 
confined and unconfined trajectories, the velocity roe(t; X, V) is a periodic 
function of the time with a period T*e(E) depending only on the energy E, 

'4Tce(E)=4 ~o dx 2[E----V(x)] 1/2 

T*~e(E) = (4.11) 

2T~e(E) = 2 | dx , O < E  

822/49/3-4-19 
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In (4.11), xm(E) is the turning point belonging to [0, a/2] for the confined 
trajectories (E<0) ,  i.e., x,~(E) is such that V(xm(E))=E. The position 
Xce(t; X, V) obviously obeys the time-translation properties 

xce(t + nT*e(E); x, v) = f {Xce(t; X ~  V), E < 0 

LXce(t; X, V) + n sgn(v)a, 0 < E 
(4.12) 

with n integer. The trajectories are entirely determined either by the initial 
conditions (x, v) or by the variables (E, tm) and sgn(v), with 

t m = 

Jx ( m ),/2 ~(e) dx' 2[E--V(x ' ) ]  ' E < 0  

ax~2 1 / m \ ~/2 
d x !  �9 - -  t " , [2EE-V(x) ) 0 < E  

(4.13) 

Furthermore, we have the simple relation 

Xce(t; X, V) = sgn(v) x(t  + sgn(v) [Tce(E ) - tm] ; E) (4.14) 

where x( t ;E)  is the position along the trajectory corresponding to the 
special initial condition (0, [ 2 ( E -  V(O))/m]m), i.e., 

x(t; E) = Xce(t; O, [2(E-- V(O))/m] t/2) 

The reduction operations are straightforward and rather tedious. Sub- 
sequently, we briefly describe the main steps of these calculations. First, 
using the periodicity of the velocity and (4.12), the time integrals 
~ d t e x p ( i f 2 t ) . . .  are reduced to integrals over the finite interval 
[0, T*e(E)]. Note that this reduction involves the calculation of the 
geometrical series Y'.~=0 exp[inf2T*e(E)], which is convergent and equal to 
1/{1-exp[ig?T*e(E)] } because s has a finite, positive, imaginary part. 
For the mean-field quantities that involve averages over WS | R with the 
weight factor p(x) 9(v), a second reduction is performed. For this purpose, 
we switch from the variables (x, v) to the variables (E, tm) (sgn v being 
given). As shown in Appendix C, the Jacobian D(x, v)/D(E, tin) merely 
reduces to 1/m. In this transformation, the weight factor p(x)~o(v) 
obviously becomes (part from a constant) exp(-fiE),  while the integration 
ranges for E and t m are [V(0), oo] and [0, 2Tce(E)], respectively. Using 
relation (4.14) and the symmetry properties of x(t;E),  the multiple 
integrals 

dx dv p(x) qo(v) dt exp(ig?t) �9 .- (4.15) 
S |  
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are finally rewritten as simple integrals over E, where the integrants are 
products of e xp ( - f iE )  by time integrals upon [0, Tee(E)] involving x(t; E) 
and v(t; E). In particular, we find 

-4/~3/20(0 ) exp[flV(0)] COp 
Wl(CO ) = x/- s eZaZCO 

x lim dE exp( - fiE) 
r / ~  0 + V(0) 

x{P(QTce(E))[f~ee(E)dtcos(~t)v(t;E)] 2 

"~- f~ ce`E, dt sin(~t)v(t ;  E) f~c~,E) dt cos(s E) 

+ foce(e) dt ' fr"e(E) dtsin(~2t-f2t')v(t;E)v(t';E)} (4.16) 

with 

P'OT 'E '"  f-tg[f2Te~(E)], E < 0  (4.17) 
t cet )) = )cotg[s ' 0 < E 

W2(co) cannot be expressed in a form as compact  as (4.16). However, the 
various ingredients determining W2(CO ) take the following simplified forms: 

F3/2p(O) exp[fl V(0)] COp 
c~(x'; co) = ~ e4a 

r.c~ 
x lim j dE e x p ( -  fiE) 

q ~ 0  + V(O) 

x {Q(O; Tee(E))f~ce'e'dtsin(f2t)tP(s~'(x',x(t;E)) 

fo ce(e' dt s in(et )  x(t; E) fo "~(e) dt cos(e t )  0(saS)(x ', x(t; E)) + s 

f T~e( E) 
+ dt x(t; E) ~/(saS)(x ' ,  x(t; E)) 

+ s fT~e(e) dt' x(t'; E) fo' dt sin(s s t)(saS)(x', x(t; E)) } 

(4.18) 
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with 

Oga'(x ', X) = O~(X' -- X) -- O~(X' + X) (4.19) 

and 

Q(12; T~(E))= 

tg[12Tce(E)] 12 dt sin(12t) x(t; E), E< 0 

f~ ce(E) -cotg[QT~e(E)] 12 dt sin(12t) x(t; E) (4.20) 

a 

0 < E  
2 sin[12T~(E)]' 

f ~  1 7(X'; co) = ,~0+lim dv ~o(v) sin[12T*~(x', v)/2] 

f0 Tc~ ', 
(x  v) �9 , , 

x dt sin[12t- 12T~e(X , v)/2] Vce(t; X, V) (4.21) 

and 

Os(X"- x') + icOlPo(X" , x'; co) 

I f  1 = -,~o+lim dv q~(v) sin[12T.e(X, ' v)/2] 

ff~e(x v) [ 1 2 T * e ( X ' ,  V)] vce(t; x , v x dt sin 12t 2 

~ VX" X x t - c e ( t ; x , v ) ]  (4.22) 

For t/ finite, the integrants in ~v~(o) dE.. .  or S~ dr.. .  are analytic 
functions on the real axis. Their analytic continuations in the complex 
plane have poles located at a distance proportional to t/ of the real axis. 
The limits (when t/-~ 0 + ) of the integrals ~v~o) dE.. .  and ~ dr.. .  can then 
be obtained by standard methods of the theory of analytical functions. In 
order to illustrate this, we consider the integral 

fv(o) dE exp(-f iE)  P(12Tce(E)) dt cos(12t) v(t; E) (4.23) 

appearing in the expression (4.16) of Wi(co). The complex energy is 
g = E +  i# with E and/~ real. The singular points of the integrant of (4.23), 
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which are close to the half straight line (V(0) ~< E, # = 0), are simple poles 
such that 

~2Tce(do ) = f ~ (n 
+ 

[ n ~ ,  

V(0) < E <  0 
(4.24) 

0 < E  

with n a positive integer. Up to the first order in ~/, these poles are do.,< = 
E.,< + i/~.,< and do..> =E. ,>  + i#.,>, where E.,< and E.,> are such that 

coTc~(E~,< ) = (n + 1)u, V(O) < E., < < 0 (4.25) 

and 
cOTce(E~,> ) = nzc, 0 < E.,> 

respectively, while/~.,< a n d / % >  are given by 

(n + 1/2)7r 
]An' < (D 2 d T J d E ( E . .  < ) q 

and 

(4.26) 

(4.27) 

H~ 

I~., > = co 2 d T S d E ( E . ,  > ) 17 (4.28) 

Since Tee(E) is monotonic increasing for E <  0 and monotonic decreasing 
for E > 0  (see Appendix C), #.,< is negative and/~.,> is positive, i.e., #.,< is 
below the real axis and d~ is above this axis. Let (g~ be the contour orien- 
ted as indicated in Fig. 4. The contour ~ is the reunion of the real intervals 

[ v(0), Eo,< - eJo,< ] 

[E.,< +cA. ,< ,  E .+I .  < - e A . + l , < ] ,  

[ E n +  1, > + e A n + l , > ,  E..> - ~ A . , > ] ,  

[El,> +~AI,>, oo[ 

and of the half-circles 

0~<n 
(4.29) 

0 < n  

C . , < = { d o ; J d o - E . , < l = e A . . < , l . t > O } ,  O<~n 

C . , > = { d o ; l d o - E . , > I = ~ A . , > , # < O } ,  0 < n  
(4.30) 

with A.,< = E . + I , < - - E . , < ,  A.,> = E . , > - E . + I .  >, and 0 < 8 < 1 .  Because 
of Cauchy's theorem, one has 

dE exp ( - f iE )  P(~T~e(E))  . . . .  ddoexp(-fldo) P(f2rce(do)) '"  
v(o) 
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from which we infer that the limit of (4.23) when q ~ 0 + reduces to the 
integral over cg, of the same function with co in place of f2. The latter, which 
does not depend on e, is computed by taking the small-e limit; its real and 
imaginary parts arise from the contributions of the intervals (4.29) and of 
the half-circles (4.30), respectively. The contributions of (4.29) can be 
rewritten as a principal part (NN), while the contributions of (4.30) are 
given by 

--ire [f2n+l/2)~/~ ]2 
co( dT~e/--d-~)))( E,, < ) exp(-/~E,, < ) dt cos(COt) v( t; E,. < ) 

for Cn,< and 

co(dTc~/-d-E)(E~,> ) exp(-/~En,> ) I ~  ~/'~ dt cos(cot) v(t; En,>)]2 

(4.31) 

(4.32) 

for Cn,>. The resulting expressions for Re{ Wl(co)} and Im{ Wl(co)} are 

4F3/2p(0) exp [/~ V(0) ] COp 
Re{ Wl(co)} = x/-~e2a2c ~ 

{ x N ~  dEexp(--BE) P(COTce(E)) 
v(o) 

x dt cos(cot) v(t; E) 

+ fr~(e)dt sin( cot) v(t; E) ;~e(e)dt cos(cot) v(t; E) 

+ fo~e(E) dt ' ff~e(e) dtsin(COt-COt')v(t;E)v(t';E)} (4.33) 

and 

Im{ Wl(CO)} 4x/-~F3/2 p(O) exp[/~V(0)] COp 
- -  c2a2CO2 

{~.  exp ( - f lE . ,< ) I f~  "+l/z,~/~ ]2 
x (dTce/dE)(E..<) dt cos(COt) v(t; E., < ) 

n 0 

(dTce/dE)(E. > ) dt cos(COt) v(t; En, > ) 
n = l  

(4.34) 
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v(0) ~ .  ~ �9 "~,1,< 
f,D,< 

Fig. 4. The oriented countour, cg~. The locations in the complex plane (E, ~) of the first poles 
g0 < gl ...... and gl > g2 > ... and of the corresponding resonant energies Eo,<, El ...... and 
E1 > ... are also indicated. 

Similar expressions for the real and imaginary parts of the ingredients 
(4.18), (4.21), and (4.22) determining W2(co) can be obtained. It is not 
essential to write down these expressions here. 

At a given frequency co, the imaginary parts of Wl(co) and W2(co) arise 
from the resonant trajectories with the resonant energies En,> or En,< 
satisfying the conditions (4.25), (4.26). These imaginary parts are well- 
behaved functions of co, because the singular contributions of En,< and 
En,> are smeared by the Boltzmann-factor-weighted integration over all 
possible energies. Thus, s(co) is a well-behaved, nonvanishing function of co. 
This means that the mean-field theory is able to describe dissipation at 
finite frequencies. 

4.2.  L o w -  and  L a r g e - F r e q u e n c y  B e h a v i o r  o f  s ( w )  

First we consider the small-co limit of s(co) (the temperature and the 
mean density p being kept fixed). When c o ~ 0  +, the resonant periods 
(n + 1/2)n/co and ng/co diverge; the corresponding resonant energies En,< 
and E,,> go to zero, while the derivatives dTce/dE(En,<) and dTcJdE(E,,>) 
diverge exponentially, as 

exp[(2n + 1 )n[d  2 V/dx2(a/2)]im/(ml/2co) -] 
and 

exp r2n~ ]d 2 V/dx2(a/2)] 1/2/(ml/2co) ] 
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respectively (see Appendix C). Therefore, the imaginary parts of Wl(co), 
~(x'; co), V(x'; co), and [~s(X" - x ')  + icoOo(x", x'; ~o)] decay exponentially. 
The leading terms of the asymptotic behaviors of the real parts of the 
previous quantities are obtained by replacing the trigonometric functions 
involved in (4.33) and (4.20)-(4.22) by their small-co forms. This shows that 
Re{Wl(co)} is O(1/co2), while Re{~(x';co)}, Re(v(x';co)}, and 
Re{~,s(X"--x ')+ico~bD(X",x ';co)} are O(1). The previous asymptotic 
behaviors imply that Re{~(x';co)} is O(1) and Im{~(x';co} decays 
exponentially when co ~ 0. Thus, we finally obtain 

Re{ Wl(co) } -- O(1/co 2) (4.35) 

Re{ W~(co) } = O(1) (4.36) 

whereas Im{Wl(co)} and Im{W2(co)} decay exponentially as 
exp(-const/og) when co ~ 0  +. Using these behaviors in (4.2)-(4.4), we see 
that s(co) decays exponentially in the zero-frequency limit. Therefore, s(0) 
does vanish, in agreement with the general (valid in d dimensions) 
semiheuristic analysis of paper I [note also that the asymptotic behaviors 
of W~(co) and W2(co) are compatible with the predictions of the latter 
analysis]. 

We turn now to the large-co limit. The large-co behaviors of the various 
integrals JOfT~E) dt cos(cot).." and ~o~e) dt sin(cot).. . involved in (4.33) and 
(4.34) are easily obtained through integrations by parts. These integrals are 
found to decay like inverse powers of co. The dominant contributions in 
(4.33) to Re{W~(co)} arises from ~e~e)dt' ~Tt,ee(E) dl "" ,  which is O(1/co). 
Consequently, we have 

Re{ W~(co) } = O(1/6o 2) (4.37) 

In (4.34), 

~n./o~ 
~ + 1/2)~/,o dt cos(cot)--, and dt cos(cot)..- 

" 0  ":0 

turn out to be O(1/co2); furthermore, the discrete sums Z~=o""  and 
Zn~l  ... can be identified with Riemann sums and replaced by the 
corresponding integrals because the resonant periods Tce(E,.<) and 
Tce(En,> ) become closer and closer as co increases. This gives 

Ira{ Wl(co)} = O(1/co 5) (4.38) 

The large-co behavior of the ingredients determining W2(co) can be 
obtained by similar techniques. When computing the time integrals 
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involved in (4.18), (4.21), and (4.22) by successive integrations by parts, 
one has to take into account properly the singular terms arising from the 
singularities in the second derivatives of V(s) and ~s(s) at s = 0 .  This 
makes the large-co analysis of W2(co) more cumbersome than that of 
Wl(co). We have been content with showing Re{~(x';co)}=O(1),  
Im{~(x', co)} = o ( 1 / c o 4 ) ,  Re{7(x' , co)} = O(1/co2), Im{y(x', co)} = o(1/co2). 
Since ~s(X"--X')+icotPD(X" , X'; co) is O(1), we see from (4.8) that ~(x'; co) 
becomes equivalent to 7(x';co) when co--, o9. Taking into account the 
asymptotic behaviors of c~(x'; co) abd 7(x'; co), we then infer 

Re{ W2(co)} = O(1/co 2) (4.39) 

Ira{ W2(co) } = o(1/co 2) (4.40) 

Inserting (4.37)-(4.40) in (4.2)-(4.4), we finally obtain 3 s(co)=o(1/co 3) 
when co --+ ~ .  

4.3. The  W e a k  Coupl ing  Limit  

Now we study the weak coupling form of s(co)=s(co/cop; F) when 
F--* 0, the ratio co/cop being kept fixed. The previous limit can be reached 
by different ways in the space of the parameters that define the model and 
its equilibrium state; all these ways are equivalent insofar as they lead to 
the same small-F expansion of s(co/cop; F). Henceforth, we shall obtain the 
latter by taking the high-temperature limit (fl--* 0), the other parameters 
being kept fixed. 

Let us consider the case of W~(co). The small-F expansion of 
Re{Wl(co)} cannot be immediately obtained from the expression (4.33), 
for the following reason. If we call H(E; co) the term between the braces 
{-.. } in the integral Sv~o)dE exp( - f iE)  {... } of (4.33), we see that H(E, co) 
diverges as E m when E ~ ~ ;  therefore, the high-temperature expansion of 
Sv~o)dEexp(-flE)H(E;co) involves divergent terms. In order to handle 
these terms properly, we first compute the high-energy expansion of 
H(E; co), with the result (see Appendix C) 

H(E, co) = ~ 1 - dx V(x) + 0 --E- 5 (4.41) 

After splitting the integration range [ V(0), ~ [ into the intervals [ V(0), 0] 
and [0, oo], we add and subtract to H(E, co) the first two terms of (4.41) in 
~ dE(--fiE) H(E; co). The expression (4.33) then becomes 

3 In addition to the algebraic terms arising from Wl(co), the asymptotic expansion of s(~o) 
when co ~ ov might contain nonalgebraic terms arising from W2(o~ ). 
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~ p(O) I - [ dx V(x)]  Re{ WI(a))} = 0 9 P - -  exp[/~V(0)] 1 2p/~ ,,/2 
co2 p ~o 

4I'3/2p(O)exp[flV(O)] {fo 
eRa209 09P ~ v(o) dE exp(-  BE) H(E; co) 

+ fo dEexp(- f lE)  H(E;09)-a09 \~mJ 

q co(2mE) u2 ~o dx V(x) (4.42) 

This expression is particularly suitable for our purpose, because the 
principal part in the second term of (4.42) remains finite when fl ~ 0. The 
corresponding limit value is merely obtained by replacing exp(-/~E) by 1 
and V(x) by its weak coupling form, which is nothing but VL(x) (see Sec- 
tion 3.2). Using also the small-F expansions of p(0) and of exp[/~V(0)], we 
find 

09 2 
Re(W1(09)) = - --P + F3/2rl 0(09) q- o(F3/2) 

092 (4.43) 

when F--. 0; rl,o(09 ) does not depend on F and is given by 

r ,,o( co ) - 
{;o 

409p ~ dE HL(E; co) 
N~ e2a3(D VL(O) 

+f0 o 

-t- co(2mE)U 2 ~o dx VL(x) (4.44) 

where HL(E; 09) is computed with the trajectories in the potential VL(x). 
The quadratures over [0, Tce(E)] involved in HL(E; co) can be performed 
in terms of elementary functions because vL(t; E) takes a simple form (see 
Appendix C). The principal part appearing in (4.44) is then transformed 
into infinite series by using techniques of the theory of analytical functions 
(see Appendix D). The final expression for rl,o(09) is 

r1,0(09) = ~ 09093 {*sh[(n+l /2)~09/09p]  
(092 + 09p2)2 ,=o ch3[( n + 1/2)~09/09p3 

ch(n~09/09p) ~ (4.45) 
+,~1= sh3(n~/09p) J 
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The leading term of the small-F expansion of Im{Wl(co)} is easily 
computed from (4.34) by replacing the temperature-dependent quantities 
by their high-temperature limits. In particular, the potential V(x), which 
determines the trajectories, is replaced by VL(x). We find 

Im { WI (~) } = r3/2il,o(e~) + o(F 3/2) (4.46) 

when F--* 0, with 

i~,o(~O)_x/-~ co 6 ~ • shE(n+ 1/2)=cop/co] 
2 co2(co 2 + co}) 2 ~,~o ch3[( n + 1~2)TrOOp~COl 

oo ch(nrCCOp/CO) ~ (4.47) 
+ ,~1= sh 3(nrcc~ p/c~ ) J 

and where we have used the simple expressions for Tee(E), E . . . .  E . . . .  and 
vL(t; E) computed in the ionic potential VL(x) (see Appendix C). 

Now we consider the case of W2(co). The weak coupling form of the 
ingredients determining W2(co) can be studied by methods similar to those 
used in the case of Wl(CO). The term between the braces {.--} in the 
expression (4.t8) of ~(x'; co) decays like l IE  3/2 when E ~  oQ. This implies 
that the corresponding integral ~ v~(o~ dE exp( - fiE) {--- } remains finite when 
/3-*0. Consequently, ~(x'; co) is O(F 3/2) when F--* 0. Similarly, we obtain 
from (4.21) 7(x';co)=O(Fl/2), while I~s(X"-x')+icotp~(x",x';co)l 
remains bounded when F-* 0. Therefore ~(x'; co) is O(F~/2). Inserting the 
weak coupling forms of ~(x'; oJ), ~(x'; o~), and p(x') in (4.6), we find 

Re { W2(co) } = O(F 3) (4.48) 

Ira{ W2(co)} = O(F 3) (4.49) 

when F-* 0. 
From the weak coupling behaviors (4.43), (4.46), (4.48), and (4.49) we 

infer that the contributions of W2(co) to R(co) and I(oo) can be neglected, or 
in other words that R(co) and I(m) reduce, respectively, to Re{ W~(co)} and 
Im{ W~(co)} up to the order F 3/2 included. 4 The resulting weak coupling 
form of s(co) is 

S(60) ~ F3/2093it,o((D ) 

x Oz { (092 - c02) 2 + 2F3/2co2(oa 2 - ~O2p) r~,o(e) ) 

+ F3094[r12 o(~0)+ i~,o(CO)- I })-1 (4.50) 

4 This is a particular aspect of a more general result relative to the high-temperature form of 
the mean-field solution. Indeed, in the high-temperature limit, the density-response function 
;~(k, co) reduces to ~) Z~](k, co)/[1 - ~ ( k )  Z~(k, co)], where ;(~](k, co) is the density-response 
function of independent electrons moving in the potential VL(x), and W~(co) is nothing but 
the contribution of ;~)(k, co) to s(co). 
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when F--*0, where rl,o(co) and il,o(co) are given by (4.45) and (4.47), 
respectively [both rl,o(co) and il,o(co) only depend on the dimensionless 
parameter co~cop, as they should]. As F ~ 0 ,  s(co) varies more and more 
rapidly near the plasma frequency cop. For small finite values of F, s(co) 
exhibit a peak, 5 centered on the frequency (D m = C O p [ 1 -  I~3/2rl,o(cop)/2], of 
h e i g h t  S((IJm)= 1/[Tcl'3/2copil,o(cop) ] and of width proportional to F 3/2 (see 
Fig. 5). Numerically, it is found from the rapidly convergent series (4.45) 
and (4.47) that rl,o(cop)= il,O(COp) ~ 0.0340. Replacing co by COm+/"3/20 in 
(4.50), we see that s(co) has a Lorentzian line shape in the vicinity of C0m, 
i.e., 

(Dp il,0(COp) (4.51) 
S(CO m -~ /~3/2D) rcF3/aE@i~,o(cop) + 4v 2] 

when F--,  0. The weak coupling form of s(co) is a positive function of co (as 
it should be), which does satisfy the elastic and second-moment sum 
rules, (6) i.e., 

fco s(co) = (4.52) dco 1 
co 

and 

f ~ d ~  - 2 (D2S(CO) (4.53) - -  (Dp 
Go 

when F -~  0. 

5 Of course, for negative frequencies, s(~o) exhibits a conjugate peak centered on -~o m. 

s (~) 

COp 

Fig. 5. The qualitative shape of s(~o) as a function of co in the weak coupling limit. 
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The previous analysis shows that, in the weak coupling limit, the 
spectrum of the fluctuations at k = 0  is governed mainly by a damped 
plasmon mode whose frequency is shifted below the plasma frequency cop. 
The shift and the damping are proportional to F3/2rl.o(cop) and I'3/2il,0(cop), 
respectively. They vanish only at F =  0; s(co) then becomes identical to the 
usual expression [6(o)-cop)+6((o+COp)]/2 corresponding to a 
homogeneous electron gas. 

+ f ]  d{ sin (2 ; ]  

(fo x Jo d~ cos 2 

4.4. The Strong Coupling Limit 

The strong coupling limit of s(co) is defined by taking F--, oo and by 
holding re~COp fixed. As in the weak coupling limit (see Section 4.3), the 
former is equivalent to various other limits, in particular the low- 
temperature one, /3 ~ oo with the other parameters fixed. 

When f l- ,  oo, the contributions of the finite-energy trajectories to 
Wl(CO) become exponentially small because of the Boltzmann factor 
exp(-flE).  Taking into account the strong coupling form (3.16) of V(x), 
we have checked that the dominant contributions to Wl(co) arise from the 
confined trajectories with energies 

ln(F/2n)(1 ln(2cop/co !" / 
E(2) = V(0) + e2a F \ + 2 ln(F/2n) J (4.54) 

In the parametric representation (4.54), 2 can take all the positive real 
values. The turning point Xm(2 ) corresponding to E(;t) goes to zero when 
F ~  oo (2 fixed) and behaves as 2aZcop/[CO(2nF)l/2], while the period 
Tce(2 ) remains finite and reduces to 2/(o. Making the variable change E-+ 2 
in (4.33), we then obtain 

Re{  Wl(O)) } ~ rl,oo(co)/r 1/2 (4.55) 

when F ~  oo. The r~,~(co) is merely proportional to cop/co with the propor- 
tionality constant 

1 g 1 2 
x ~ f o  d2~{-tg2[fod~C~ ln(1/~,)]~/2)] 

d~' [n ln(1/~') ] ~/2 
1 

d~' [n ln(l-/~')] '/2) 

1 )} 
[n ln(1/3") ] 1/2 (4.56) 
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which, if necessary, could be evaluated numerically; note that in (4.56) the 
dimensionless parameter ~ has been introduced by writing x =  ~Xm(2), 
whereas ln(1/~') comes from the large-F expansion of V(xm(2))-  
V(~'Xm(,~)). In (4.34), one only has to keep the resonant energies E . . . .  
which obviously correspond to 2, = (n + 1/2)re. We then find 

Im{ Wl(co) } ~ il,oo(co)/F 1/2 (4.57) 

when F--,  oo. Like rl,oo(co), it,oo(co) is proportional to cop~co with the 
proportionality constant 

8 ~ 1 {f~ [ ( 1 )  f/ 1 ]}a 
x/ - s  1/2 dr  n + ~  7r d~' [~zln(1/~,)]a/i (4.58) 

[this constant could be evaluated numerically as for (4.56)]. 
In (4.6), the dominant contributions to W2(co) arise from the small 

values of x' proportional to 1/x/-F. The large-F behavior of e(x'; co), 

7(x'; co), and Os(X" - x') + icoOo(x", x'; co) for the arguments x' = a~'/x/~ 
and x"=a~"/xf-F is computed by keeping only the trajectories with 
energies given by (4.54). This analysis shows that 

co)ta 
E O s(a( + icoO co) l/e2a 

co )/a 

behave as 1/x/-F times functions of 4', ~", and co~COp. Inserting these 
behaviors and ap(a~"/x/-F)~ 1/(~") 2 in the integral equation (4.8), we see 
that ~(a~'/x/--F; co)/a also behaves as 1/x/-F times a function of ~' and co/cop. 
Consequently, we find 

Re{ W2(co) } ~ r2,~(co)/F m (4.59) 

Im { W2(co) } ~ i2,oo (c0)/F ~/2 (4.60) 

when F--* oo. Both r2,oc(co ) and i2,oo(co) depend only on co~cop. They are 
expressed as integrals similar to (4.6) over ~' running from - o o  to 0% the 
integrants being products of functions of ~' and co/cop. One of these 
functions [coming from the large F-behavior of ~(a~'/x/-F; co)] is implicitly 
defined as the solution of an integral equation. If necessary, a numerical 
analysis of r2,oo(co ) and of i2,oo(co) could be easily done. 

Inserting (4.55), (4.57), (4.59), and (4.60) in (4.2)-(4.4) we finally 
obtain 

1 ia,oo(co)+i2,~(co ) (4.61) 
s( co ) F~/~ rtco 

when F ~  oo. Thus, at any given frequency co, s(co) goes to zero in the 
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strong coupling limit. For  F large and finite, s(co) is small everywhere, 
except in a narrow neighborhood of the origin co = 0. Indeed, for such 
values of F, the asymptotic expressions (4.55) and (4.57) cannot be used for 
very small values of co, because both r,,~(co) and i1,~(co) diverge as 1/co 
when co ~ 0. This suggests that s(co) should exhibit two conjugate peaks 
near co = 0 [it must be borne in mind that s (0 )=  0 for any F] .  

The previous results mean that the collective plasmon mode vanishes 
when F ~  oo. In this limit, the spectrum of the fluctuations at k - - 0  is 
governed by individual damped modes corresponding to the confined 
oscillations of one electron near its trapping ion. 

4.5 .  D i s c u s s i o n  

Unfortunately, a completely unambigous discussion of the mean-field 
predictions is not possible, because exact (analytic or molecular dynamic) 
data relative to s(co) are not available. However, we claim that these 
predictions are reliable for the following two reasons. First, they agree, 
from a qualitative point of view, with molecular dynamic observations in 
two dimensions. (TJ Second, they are consequences of physical mechanisms 
that are not spurious effects inherent in the mean-field approximation. 
Subsequently, we summarize the essential mean-field predictions and we 
discuss their physical meaning. 

Since s(~o) is a well-behaved, nonvanishing function of co, any density 
fluctuation at a given frequency co :/=0 is damped, even in the infinite- 
wavelength limit ( k=0 ) .  This is due to the "friction" of the electrons 
against the periodic lattice. This damping mechanism has nothing to do 
with the usual Landau damping for a homogeneous electron gas,(S'9~; in 
particular, note that the Landau damping vanishes at k = 0, in contrast to 
the present damping, which persists in this limit. In the weak coupling 
regime, the charge fluctuations at k = 0  reduce to collective plasmon 
oscillations: the ionic "trapping" is weak and the electrons tend to behave 
as a homogeneous system (with a uniform background) when F ~  0. For F 
small and finite, the plasmon mode is shifted and damped because of the 
"friction" mechanism. The corresponding shift and damping given by 
the mean-field theory should become asymptotically exact when F ~ 0 ;  
in other words, the leading term of a systematic small-F expansion of 
s . . . .  t(co) should coincide with the mean-field expression (4.51) in the 
vicinity of the plasma frequency. 6 The infinite-wavelength plasmons are 

6 In the vicinity of 60=0, the mean-field description of s(o) is of course completely wrong, 
since Se~ac,(0) is always infinite. This defect persists at low temperatures, although mean-field 
theory reproduces some qualitative aspects of the strong electronic localization. From a 
~echnical point of view, this is due to the fact that, however small the temperature is, the 
unconfined trajectories give a finite contribution to s(cn), which makes s(e~) vanish when 
co-~ 0. 
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increasingly damped and shifted toward zero frequency as the coupling 
strength increases, due to a gradual "trapping" of the electrons by the ions. 
In the strong coupling regime, the plasmon mode vanishes. The charge 
fluctuations then arise from small oscillations of one electron in the binding 
potential created by its trapping ion. Like the mean-field expression of 
s(co), s .... t(co) should vanish everywhere when F ~  0% except in a narrow 
neighborhood of ~o=0 Is .... t(0) is infinite for any F]. However, the 
analytic structure of the strong coupling form of s .... t(co) is surely different 
from the prediction of the mean-field theory. 

Although the mean-field description of s(co) turns out to be quite 
reasonable, this description might suffer from the following defects. Indeed, 
except in the weak coupling limit (see Section4.3), the mean-field 
expression (4.2) might take negative values and violate the elastic and 
second-moment sum rules (4.52), (4.53). Note that (4.42) is directly 
satisfied if 1 +R(s~)+ iI(~?) does not vanish in the upper complex half- 
plane (i.e., for t/ positive); however, the latter proposition is itself rather 
hard to prove, and the validity of (4.52) in the framework of the mean-field 
approach remains an open question. 

5. C O N C L U S I O N  

The present analysis shows that mean-field theory gives a coherent 
and reasonable description of the static and dynamic properties at finite 
wavelengths or finite frequencies. This is due to the fact that mean-field 
theory takes into account, at least qualitatively, the static "trapping" of the 
electrons by the ions, as well as the dynamic "friction" of the electrons 
against the periodic lattice. The combination of these mechanisms leads to 
the following mean predictions. In the weak coupling regime, where mean- 
field theory is expected to be asymptotically exact, the electrons are 
"weakly" localized. Then, the collective plasmon mode, which essentially 
governs the spectrum of the fluctuations, is damped and shifted below the 
plasma frequency. As the strength of the coupling increases, the electrons 
are more and more trapped by the ions and the plasmon mode gradually 
vanishes. In the strong coupling regime, the system behaves as an ensemble 
of independent oscillators corresponding to the individual motions of the 
electrons near their trapping ion. 

The success of the previous mean-field predictions is not inconsistent 
with the failure of mean-field theory to predict the phase of the system 
(which is always dielectric(4)). Indeed, the latter is determined by the 
small-k or the small-e) behaviors of S(k) and s(co), respectively. A correct 
description of such behaviors must include correlations or electron 
electron collisions, u) which are precisely neglected in the mean-field 
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approach. For k and o9 finite, these collisions do not have a crucial effect 
upon the qualitative behavior of S(k) and of s(og). 

Since the "trapping" and "friction" mechanisms are present in any 
dimension, the qualitative mean-field predictions, as well as their reliability, 
should not depend much on space dimension (except for the predictions 
regarding the phase of the system, (1) of course). In a forthcoming paper 
(referred to as paper III), we shall study the accuracy of the mean-field 
solution through a quantitative comparison with molecular dynamic results 
in two dimensions. 

A P P E N D I X  A 

In this Appendix, we solve the mean-field equilibrium equations that 
determine p(x) and V(x). First, let us consider the second-order differential 
equation (3.5) for V*(x)= f l [ V ( x ) - V ( 0 ) ] .  Multiplying each side of (3.5) 
by dV*/dx and integrating from 0 to x, we obtain 

1 F(dv*? 1 -2 1_\ dx J - fiae4 = c~:2{exp[-  V*(x)] - 1 } ( a l )  

Because with the help of the boundary conditions (3.6) and (3.7). 
d V * / d x ( O + )  = fie 2 is positive, V*(x) necessarily increases when x increases 
near x = 0. It can be checked by using (A1) that dV*/dx is in fact positive 
for x<x , ,  and vanishes at x = x c ,  where xc depends on c. For x < x , ,  (A1) 
is integrated as 

f 
V*Cx) 1 

du ~o [exp( - u) - 1 + F/4c] 1/2 - 2(cF)1/2 Xa (A2) 

and xc is given by 

a ~uc 1 
xc - 2(cF) 1/2 do du [ e x p ( - u ) -  1 + F/4c] 1/2 (A3) 

with uc = - l n ( 1 -  F/4e). The quadratures appearing in (A2) and (A3) can 
be computed in terms of elementary functions by switching from the 
variable u to the variable w =  [ e x p ( - u ) -  ! + f f / 4 c ]  1/2. This gives 

_ l n { l + t g 2 [ a r c t g (  F )1/2 F1/2 

822/49/3-4-20 
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for x <~ x c with 

2 ( F ~ '/2 
x c = a F1/2(4 c _ F)  ~/2 arctg \~--~S-~j (A5) 

For x > x , . ,  dV*/dx  becomes strictly neative and V*(x)  is given by an 
expression different from (A4) (it is not necessary to write this expression 
here). 

Up to now, c is a free parameter. This parameter is determined by 
imposing the neutrality constraint (3.10). By virtue of Gauss's theorem, this 
constraint is equivalent to setting dV*/dx (a /2 )=O,  or, according to the 
previous analysis, xc = a/2. This gives the transcendental equation (3.11) for 
c(F). Replacing V*(x)  by (A4) in (3.8) and (3.9), we finally obtain the 
mean-field expressions (3.12) and (3.13) of p(x)  and V(x), respectively. 

APPENDIX B 

In this Appendix, we study some properties of T(k).  First, we consider 
the qualitative variations of T(0) as a function of F. When F ~ 0, T(0) goes 
to 1. The small-F expansion of T(0) can be easily obtained through the 
perturbative series 

T ( O ) = I +  ~ (-1)~fl~f( d x d x l . . . d x ~ p ( x )  
n = 1 ws)n+ 1 

n--1 

• 1~ P(Xj+l)~s(xj+l-XJ) (B1) 
j=o 

(Xo = x). The order with respect of F of each term of (BI) is determined by 
replacing p(xf l  by its small-K expansion (3.15). Taking into account 

~r  = F(1/6 - Is]/a + $2/a2), Isl ~< a/2 (B2) 

and 

fws as g,~(~)= o (B3) 

we find 

( - -  1)n~n ~(WS) n§ d x  . . . .  0 ( 1  ~2n+l ) 
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Therefore, the first correction to 1 in (B1) is given by the term n = l, which 
is O(F3), i.e., 

--/~ f(WS)2 dX dx 1 p (x )  P(Xl)  ~[Is(X 1 - x )  

__]~3p2 f(WS)2 dx dx 1 @s(X) ~/s(xl) Os(xl  - x) 

Using the Fourier decomposition of Cs(S), 

with ~;s,o = 0 and Cs, n 

0s(S) = ~ ~s.nexp(iGn s) 
n= --oo 

= eZa/(27c2n 2) (n r  we rewrite (B4) as 

-fl  I~ws)2 & dx, p(x) p(x~) Os(x~ - x) 

(B4) 

(Bs) 

-- F 3 ~ 1 F 3 
_fi3 (q~ s,n) 3 = -~-g-~6 ~--g- 3780 (B6) 

n= ov n=l  

Using (B6) in (B1), we obtain the small-F expansion (3.26) of 7"(0) up to 
the order F 3 (note that this expansion is an entire series with respect to F). 
In order to study the large-F behavior of T(0), it is useful to consider the 
expression 

T(0) = Jws dx p(x) ~(x) 

where ~(x) is the solution of the integral equation 

(B7) 

~(x)= 1-- fl fws dx' ~(x') p(x') lp s(x' - x ) (B8) 

When F ~ o% p(x) becomes very sharp near x = 0 and varies rapidly in a 
narrow interval of x = 0 whose amplitude is proportional to 1/F; at the 
same time, for x finite, p(x) goes to zero and is O(1/F). Inserting these 
behaviors in (BS), it can be checked that ~(x) is O(1/F) in the previous 
interval and remains finite for x finite. We then see from (BT) that T(0) is 
O(1/F) when F ~  oo [the 1IF contributions to T(0) arise from both 
regions x=O(1/F) and x finite]. This strong coupling behavior and the 
weak coupling expansion (3.26) suggest that T(0) has the qualitative shape 
drawn in Fig. 3. 
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Now, we compute T(Gn + q) (n r O, Jq[ < n/a) in terms of the functions 
t/.~(x; q) defined as the solutions of the integral equations (3.22). Replacing 
Os(X' - x; G~ + q) by 

O s(X'-  x; G~ + q) = P~c( q) exp[ iG.(x ' -  x)] - p~c(k ) 

+ Os(X' - x; q) exp[iG.(x' - x)] (B9) 

in (3.19), we obtain (k=  G. + q) 

I ~c2 T(k) 1 exp(iG~x)--Xq-~D2 U.(k) ~.(x; k) = 1 + --~ 

- fi fw dx' ~.(x'; k)  p ( x ' )  Os(X' - x; q)  
s 

(mo)  

with 

~n(x; k)=~(x;  k) exp(iGnx) (BI~) 

and 

Un(k)=fws&G(x;k) p(x) (m2) 

Since (B10) is an inhomogeneous linear integral equation for Cn(x; k) with 
the same kernel as (3.22), Cn(x; k) reduces to the following linear com- 
bination of t/.(x; q) and t/o(X; q): 

[ ] ~.(x; k) = 1 + ~ T(k) t/.(x; q) - ~ U.(k) t/o(X; q) (B13) 

Furthermore, Un(k) can be expressed in terms of T(k), To,o(q), and Tn,o(q) 
by replacing ~n(x; k) by (B13) in (B12). This gives 

U.(k)= q2[kZ+x~T(k)] 
ka[q2+ x~To, o(q)] T',~ (B14) 

Using (Bll)  and (B14), we infer from (B13) 

T(k)[ q.(x; q) exp( - iG.x) 
K 2 q 

~(x; k) = 1 + ~ -  
A 

K~,[k 2 + x~, T(k)] 
k2[ q 2 + ~C2D To,o(q)] T~'~ q ) r/~ q) exp( - iG .x )  (B15) 
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The substitution of ~(x; k) by (B15) in (3.18) gives an algebraic equation 
for T(k) whose solution in terms of To.o(q), Tn,o(q), To,n(q), and Tn.~(q) is 
the expression (3.23). 

The weak and strong coupling behaviors of T(Gn) (n 5 0 )  are deter- 
mined through methods similar to the ones used previously in the case of 
T(0). In the weak coupling limit, we start from the perturbative represen- 
tation of t/n(x) = t/.(x; q = 0), i.e., 

~ln(xl=exp(iG~x)+ ~, dxl...dxpexp(iGnXp) 
p = 1 W S ) P  

p--1 
x H p(xj+~) Os(Xj+~-xj) (B16) 

j=0  

which gives 

tln(x ) = exp( iG .x  ) - fl~ s,-~ exp( iG.x ) + flz(k 2s, . exp( iGnx ) 

-fl2exp(iG. x) ~ ~S,m~S, m .exp(iGmx)+O(fl 3) (B17) 
r t l  = - -  o o  

with the help of (3.15) and of (B5). Inserting (B17) in the definition (3.24) 
of Tn,m(O), we obtain 

ro,o(O) = r(o) = I + o(r ~) 
F F 2 

To,n(0) = 27r2n2 494n 4 t- O(F 3) 

F F 2 
T~,o(0 ) = 27r2n 2 4;74/,/4 t- O(F 3) 

f f 2 
T~,n(0 ) = 1 --  2/~2n------ 5 + ~ + O ( F  3 ) 

(B18) 

when F ~  0, which leads to the weak coupling expansion (3.27) of T(Gn). 
In the strong coupling limit, qn(x) has a behavior similar to t/o(X ) = ~(x): 
~/n(x) is O(1/F) in a narrow neighborhood of x = 0, and remains finite for x 
finite. Therefore T,,m(O ) is O(1/F), and then T(Gn) is also O(1/F) when 
F--,oo [-like T(0)]. A similar analysis of T(Gn+q) shows that 
T(Gn+q)- I  is O(F 3) when F -*0 ,  while T(Gn+q) is O(1/F) when 
F--* oo. The fact that T(Gn+q) - i  goes to zero faster than T(G,) when 
F-*  0 might constitute a precursor sign of the onset of oscillations in T(k) 
for finite values of F. 

For studying the large-k behavior of T(k), it is sufficient to consider 
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the limit of T(G,,+q) when n ~  ~ for any given q in 
r/,(,m(x; q) through 

r/.(x; q) = exp(iGnx) + q(f)(x; q) 

we see that q(.m(x; q) is the solution of the integral equation 

with 

BZ. 

qf) (x;  q) = 6.(x; q) -/~ fws dx' ~/~R)(x'; q) p(x') Os(X'-  x; q) 

6.(x; q) = --fl fws dx' exp(iG.x') p(x') ~b s(X' - x; q) 

= --fla ~ (IS.m(q) ~ . . . . .  exp(--iGmx) 
m =  - -  ,:~ 

Alastuey 

Defining 

(B19) 

(B20) 

(B21) 

Since both Fourier components of ~s  and p(x) go to zero for large 
wavevectors, 6.(x;q) goes to zero everywhere (uniformly in x) when 
n -o oo. This implies a similar behavior for r/(nm(X; q) and consequently we 
have 

q.(x; q) = exp( iG.x ) + o(1) (B22) 

when n -o o0. Using (B22) as well as the decay of the Fourier components 
of p(x) and ~/0(x; q) for large wavevectors, we find 

Tn.o(q) ~ 0 

To..(q)~O, when n --+ oo (B23) 

Tn,,,(q) ~ 1 

Using (B23) in (3.23), we finally obtain limn~oo T(G,,+q)=I, which 
shows that T(k) goes to 1 when k ~ ~ .  

APPENDIX C 

In this Appendix, we study some properties of the trajectories in the 
mean-field equilibrium potential V(x). First, we compute the Jacobian 
J= D(x, v)/D(E, tin) of the transformation (x, v) -o (E, tin). It is convenient 
to rewrite J as 

J= [D(E, tm)/D(x, v)] 1 

~ t  m OE ~ t  m - 1  

= ( x , v ) - s g ( x , v ) - - f f v ( x , v ) - ~ x ( X ,  l)  ) (c1) 
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One obviously has OE/Ox(x, v) = dV/dx and OE/Ov(x, v) = my. Furthermore, 
after rewriting I m as 

we find 

and 

tm(X , V)= Tce(E(x , D))+ dx' \2[-E- V(x ' ) ]J  (C2) 

Otm(x,v)=C3E(x,v)~dTc~ ml/2f] } 1 
~?x Ox [ dE 2 3/2 dx' [ E -  V(x')] 3/2 --v (C3) 

~v =-~v (x, v) ~ dE 2 3/2 dx '  [- E -  V(x') ] -3/2 (C4) 

Using (C3) and (C4) in (C1), we obtain J =  l /m .  

Now, we study the variations of Tc~(E) when E varies from V(0) to Go. 
We immediately see from (4.11) that T~(E) monotonically decreases from 
oo to 0 when E varies from 0 to oo. For E < 0 ,  we need to compute 
dTce/dE. In order to avoid the divergent terms that would appear in a 
direct differentiation of (4.11) with respect to E, we first proceed to an 
integration by parts, with the result 

exm(E) V/dxZ{2m[E - V(x)] }1/2 Tee(E) = { 2 m [ E -  V(0)]} 1/2 J0 dxd2 
d V / & ( O  + ) ( a V / d x )  2 

(c5) 

Taking the derivative of (C5) with respect to E, we find 

dE dV/dx(O + )[-E-  V(0)] 1/2 

~xm(E) dx dZV/dx2 i \ 
Jo ( d V / d x ) 2 E E  - V(x)] 1/2) (C6) 

Since dZV/dx 2 is negative in the interval ]0, a/2] [-see Eq. (3.5)] and 
dV/dx(O + ) is positive, dTce/dE is positive for E<0 .  Therefore, Tce(E ) 
monotonically increases from 0 to oo when E varies from V(0) to 0. 

The leading term of the asymptotic behavior of Tc~(E) when E--* 0 is 
computed by replacing V(x) by 

2 

2 dx 2 x -  (C7) 
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in (4.11). This gives 

1 m 1/2 [-a2]dZV/dxZ(a/2)[-] 
Tee(E) - 2 [d2V/dxZ(a/2)l 1/2 In [ ~ ~ + const (C8) 

when E-+O [d2V/dx2(a/2) is negative]. When co--+0 +, the resonant 
periods diverge and the corresponding resonant energies E.,< and E.,> go 
to 0. According to (C8), E.,< and E.,> behave then as 

const- exp[ - (2n + 1 )r~ [dZV/dx2(a/2)] 1/2/(ml/2o0)] 

and 
const �9 exp [ - 2nrt I d 2 V/dx 2 (a/2)l 1/2/( m 1/2c0) ] 

respectively. This implies 

dTce dE (En, < ) "~ const �9 exp (2n + 1 ) Ir ]d2 V/dxZ(a/2 )] 1/2] 
m 1/2o) A 

(C9) 
dT~e [ dE (E.,> ) ~ const -exp 2n~ [d2V/dxZ(a/2)l m~ 

m 1/269 A 

when o~--*0 +. The asymptotic behaviors (C9) are also valid in the limit 
n ~ ~ ,  the other parameters being kept fixed. Note that this ensures an 
exponentially rapid convergence of the series that determine the imaginary 
parts of the mean-field quantities [see, for instance, the expression (4.34) of 
Im{ Wl(~o)}]. 

Since V(x) is bounded, in the limit E ~  oo the laws of motion x(t; E) 
and v(t;E) can be computed by perturbative techniques, where the 
reference laws Xo(t; E) = (2E/m)i/2t = rot and Vo(t; E) = (2E/m) m = Vo 
correspond to free motion. Starting from the conservation of the energy, a 
straightforward calculation leads to 

and 

v( t; E) = 1 2E 

1 [-dV vo, 
+- LT;x fo dx v(x  

x ( t ; E ) = v o t - - ~  dx V(x)+O -~ 

Zce(g) a(DT~l/2 I 1 ( "a/2 ( 1)] 
2 \ 2 E J  l+~--~J ~ d x V ( x ) + O  -~ 

(C10) 

(C l l )  

(C12) 
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[-the perturbative expansions (C10) and (C11) are valid for rot fixed]. The 
large-E behaviors of the various time integrals ~o r'xE) dt involved in the 
mean-field expressions directly follow from (C10)-(C12). 

Finally, we integrate the equations of motion in the case where V(x) 
reduces to VL(x). Here VL(x) is the reunion of arcs of parabolas with a 
negative curvature [see (3.14)] and the force FL(x)= -dVL/dx takes the 
linear form FL(x)=--eZ(1--2x/a)  in the interval [0, a]. Newton's 
equation then becomes a second-order linear differential equation with 
constant coefficients, which is merely integrated in terms of exponential 
functions. We find 

vL(t; E) = 
(2 ['2-~[--n~-) l/2 sh[COpTce e2a4 

(2-~Em )1/2 ch[COpTce,L(E)-COpt], 0<~F 

- - - < E < 0  

(C13) 

for 0 < t < 2T~e,L(E ) with 

I 1 argch//e2a "] 1/2 e2a 

Tce,L(E) = COp \4---~]J ' 4 
1 argsh 0 < E 
CO. \72)  ' 

- - - < E < 0  

(C14) 

[ VL(O)= -e2a/4]. The resonant energies in VL(x) are explicitly computed 
from (C14) as 

e2a 
En,< = 4chZ[(n + 1/2)~COp/CO] (C15) 

and 
e2a 

E,,> = 4 sh2(ngCOp/a)) (C16) 

Using (C15) and (C16) in the derivative dTce/dE calculated from (C14), we 
obtain 

dTceL 2 ch3[(n+ 1/2)zrCOp/CO] 
- ~  (E. < ) =  (C17) ' COpe2a sh[(n + 1~2)7"Crop~COl 

and 
dTc~'L (En.>) = 2 sh3(ncop/co) 

dE COp e2a ch (nzcCOp/CO ) (C 18) 

The explicit expressions (C13)-(C18) allow one to derive simple represen- 
tations for il,o(e0 [see (4.47)] and rl,o(C0) (see Appendix D). 

822/49/3-4-21 
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APPENDIX  D 

In this Appendix, we express rl,o(co) in terms of infinite series whose 
convergence is exponentially rapid. We start from the expression (4.44) for 
q,0(co). In both integrals ~~ ) dEHL(E; co) and ~ dE [HL(E; co)+ --.], we 
switch from the variable E to the dimensionless variable u = cop T~e,L(E). 
Using (C14), we find the Jacobian [dE/du[ of this transformation, 

t e2a sh u _ ~  - - ~  ch3-----~, E < 0 
= (DI)  e2a ch u 

2 shau ' 0 < E 

while the explicit expression (C13) for vL(t; E) allows us to compute the 
time integrals ~o Tee,Lee) dt... in terms of hyperbolic functions. The resulting 
expression for rl,0(co) is 

1 4 2 O,) p (  (.O p - -  (.0 2)  
r l , ~  , ,-, / ~  0)2[( / )  2 ql- 0)2"12 

IZN/7~ t p t 

I co{ r ~ s h u  uco 
- P 2 2 ~ | du ~ t g - -  

q 2x//~ co(cop + co ) do COp 

5 
1 COp 2 2 " ~  [ ch u (cotg uco 

2x/~co(cop2+co ) 0o dUs-~-uu\ % 

c@+co~ ) coP coth u -~ u (D2) 
CO 3COpCO 

The first principal part appearing in (D2) is transformed as follows. 
Let ~1,~ be the contour shown in Fig. 6. We have 

~o ~ sh u uCO ~ du ~ tg CO---p 

= 1 Re ( lira sh z tg z___~_~ 
2 \~o+ f~l,~ dZc--h-~z COp/ 

= co R e (  lim f~ dz 1 ) (D3) 
4 %  \~ ~ ~ t, chZz cosE(zco/cop) 

where the last line results from an integration by parts. The function 
1/[ch2zcos2(zco/%)] is analytic in the upper ( I m z > 0 )  complex half- 
plane, except at the points irc(n + 1/2) (n a positive integer) located on the 
imaginary axis, which are double poles. Furthermore, since this function 
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-5~O)p/20,) [ -2Tt.x)p/20) 
-3~p /2~  

'9 

0 ;~Wp/2O) I 
3~O)p/2W 

5;TO)p/2~, 

~ r~ ,~)7,E r~ c 
I 0 

-~wp/w 

g'h 
I 2~p/~ 

7['4~) p//(~0 

Fig. 6. The  or iented co n tou r s  NI,~ and  @2,~ in the complex  plane (u, y). 

satisfies the hypothesis of Jordan's lemma on the big half-circle CN= 
{Z; [Zl = Nrc and Im z ~> 0}, the integral ~,,~ dz . . .  appearing in (D3) can be 
computed by the theorem of residues. This gives 

fo ~ sh u uco _ ~cn__~ 2 ~ sh[(n + 1/2)~zco/cop] 
2 ch3[(n + 1/2)~co/cop] ~ dUc--~utg-~p- cop ,,=o (D4) 

In order to obtain an expression for the second principal part of (D2) 
similar to (D4), we first rewrite the latter as 

ch u urn cop coth u + cop u 
, ~  du s-ff~u cotg COp co 3~p CO 

COP + lim r  du ch u uco COp co 
- -  6~p ~ e ~ o+ ~ cotg - ~ + (D5) 

where we have used 

f oo du ch2u ch e 1 1 1 1 1 
- -  - + ~ coth e + O(e) sh4u 3 sh3e -5=~5~3+3-~e-5 

; ~ ch u g 1 1 1 1 
dus-s-~uU 2sh2e 2 7 - 2  + - + ~ c o t h  e - - - =  O(e) 

(D6) 



724 Alastuey 

Let C~ be the little half-circle C~ = {z; tzl = a, Im z ~> 0} oriented clockwise 
and let ~2,~ be the contour shown in Fig. 6. Since 

fc ch z zOO 2~p  2co dz ~ cotg - 
COp 3CO~ 3 I" 3-~p~ + O(e)  

we see that (D5) reduces to 

2-0)2 1R ( l im  ; d z cop + ~ e z cotg z~o. ch 

6cop co \ ~ 0 +  2~" ~ COp/ 

(,02--0) 2 ( ~ 1 ) 
- P co Re lira dz 

6COpCO 4COp ke~O+ 2,~ s h2z sinZ(zo)/COp) 

After calculating 
theorem of residues, we find 

(D7) 

(D8) 

the integral of 1/[sh2z sin2(zCO/COp)] along ~2,, by the 

~ du s-ff~u cotg _ COp coth u + COp u 
CO 3COp CO 

2 0)2 COp - zrCO 2 ~ ch(nz~CO/COp) 
2 /-., sh3(mzCO/COp) (D9) 6COp (O COp n = 1 

Using (D9) and (D4) in (D2), we finally obtain the expression (4.45) 
for rl,o(CO). Note that the series ~ , ~ o " "  and ~ = 1 - . .  converge exponen- 
tially rapidly. This allows simple and accurate numerical calculations of 
rl,o(CO); for instance, rl,o(COp) is determined with an absolute accuracy 
smaller than 10 -4  by only keeping the first two terms of the previous series. 
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